On densest packings of equal balls of Rn and Marcinkiewicz spaces

نویسندگان

  • Gilbert Muraz
  • Jean-Louis Verger-Gaugry
چکیده

We investigate, by “ à la Marcinkiewicz” techniques applied to the (asymptotic) density function, how dense systems of equal spheres of Rn, n ≥ 1, can be partitioned at infinity in order to allow the computation of their density as a true limit and not a limsup. The density of a packing of equal balls is the norm 1 of the characteristic function of the systems of balls in the sense of Marcinkiewicz. Existence Theorems for densest sphere packings and completely saturated sphere packings of maximal density are given new direct proofs. 2000 Mathematics Subject Classification: 52C17, 52C23.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 8 On densest packings of equal balls of R n and Marcinkiewicz spaces

We investigate, by “ à la Marcinkiewicz” techniques applied to the (asymptotic) density function, how dense systems of equal spheres of Rn, n ≥ 1, can be partitioned at infinity in order to allow the computation of their density as a true limit and not a limsup. The density of a packing of equal balls is the norm 1 of the characteristic function of the systems of balls in the sense of Marcinkie...

متن کامل

Sphere Packing: asymptotic behavior and existence of solution

Lattices in n-dimensional Euclidean spaces may be parameterized by the non-compact symmetric space SL(n,R)/SO(n,R). We consider sphere packings determined by lattices and study the density function in the symmetric space, showing that the density function ρ(Ak) decreases to 0 ifAk is a sequence of matrices in SL(n,R) with limk→∞ ‖Ak‖ = ∞. As a consequence, we give a simple prove that the optima...

متن کامل

Densest Packings of More than Three d -Spheres Are Nonplanar

We prove that for a densest packing of more than three d–balls, d ≥ 3, where the density is measured by parametric density, the convex hull of their centers is either linear (a sausage) or at least 3–dimensional. This is also true for restrictions to lattice packings. The proofs require a Lagrange–type theorem from number theory and Minkowski’s theory of mixed volumes.

متن کامل

Parabolic Marcinkiewicz integrals on product spaces

‎In this paper‎, ‎we study the $L^p$ ($1

متن کامل

New bounds for multiple packings of Euclidean sphere

Using lower bounds on distance spectrum components of a code on the Euclidean sphere, we improve the known asymptotical upper bounds on the cardinality of multiple packings of the sphere by balls of smaller radii. Let Rn be the n-dimensional Euclidean space, and Sn−1(r) ⊂ Rn be the (closed) Euclidean sphere of radius r with the center in the origin. Let further S̃n−1(r, ā) be the open ball of ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008